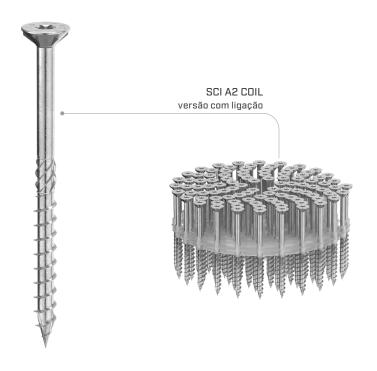
| SC| A2 | A|S|304

PARAFUSO DE CABEÇA DE EMBEBER

PONTA 3 THORNS


Graças à ponta 3 THORNS, as distâncias mínimas de instalação são reduzidas. Podem ser utilizados mais parafusos em menos espaço e parafusos maiores em elementos mais pequenos. Os custos e o tempo de execução do projeto são menores.

RESISTÊNCIA SUPERIOR

A nova ponta, a rosca em forma de guarda-chuva assimétrica especial, a fresa escareadora alongada e as nervuras de corte sub-cabeça proporcionam ao parafuso uma maior resistência à torção e um aparafusamento mais seguro.

A2 | AISI304

Aço inoxidável de tipo austenítico A2. Oferece uma elevada resistência à corrosão. Adequado para aplicações no exterior até 1 km do mar na classe C4, na maioria das madeiras ácidas na classe T4.

CAMPOS DE APLICAÇÃO

Utilização no exterior em ambientes agressivos. Tábuas em madeira com densidades < 470 kg/m³ (sem pré-furo) e < 620 kg/m³ (com pré-furo).

■ CÓDIGOS E DIMENSÕES

d_1	CÓDIGO	L	b	Α	pçs
[mm]		[mm]	[mm]	[mm]	
	SCI3525(*)	25	18	7	500
3,5	SCI3530(*)	30	18	12	500
TX 15	SCI3535(*)	35	18	17	500
	SCI3540(*)	40	18	22	500
	SCI4030	30	18	12	500
	SCI4035	35	18	17	500
4	SCI4040	40	24	16	500
TX 20	SCI4045	45	30	15	200
	SCI4050	50	30	20	400
	SCI4060	60	35	25	200
	SCI4535	35	24	11	400
	SCI4540	40	24	16	400
4.5	SCI4545	45	30	15	400
4,5 TX 20	SCI4550	50	30	20	200
17 20	SCI4560	60	35	25	200
	SCI4570	70	40	30	200
	SCI4580	80	40	40	200
	SCI5040	40	20	20	200
	SCI5045	45	24	21	200
	SCI5050	50	24	26	200
5	SCI5060	60	30	30	200
TX 25	SCI5070	70	35	35	100
	SCI5080	80	40	40	100
	SCI5090	90	45	45	100
	SCI50100	100	50	50	100

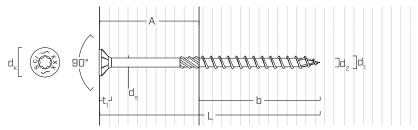
d_1	CÓDIGO	L	b	Α	pçs
[mm]		[mm]	[mm]	[mm]	
	SCI6060	60	30	30	100
	SCI6080	80	40	40	100
6	SCI60100	100	50	50	100
TX 30	SCI60120	120	60	60	100
	SCI60140	140	75	65	100
	SCI60160	160	75	85	100
	SCI80120	120	60	60	100
	SCI80160	160	80	80	100
8	SCI80200	200	80	120	100
TX 40	SCI80240	240	80	160	100
	SCI80280	280	80	200	100
	SCI80320	320	80	240	100

PRODUTOS RELACIONADOS

HUS A4 ANILHA TORNEADA

ver pág. 68

SCI A2 COIL


Disponível na versão ligada para uma instalação rápida e precisa.

Ideal para projetos de grandes dimensões.

Compatível com KMR 3373 e KMR 3352 para Ø4 e KMR 3372 e KMR 3338 para Ø5. Para mais informações, ver a pág. 403.

d₁ [mm]	CÓDIGO	L [mm]	b [mm]	A [mm]	pçs
4					7000
TX 20	SCICOIL4025	25	18	/	3000
-	SCICOIL5050	50	30	20	1250
5 TX 25	SCICOIL5060	60	35	25	1250
	SCICOIL5070	70	40	30	625

GEOMETRIA E CARACTERÍSTICAS MECÂNICAS

GEOMETRIA

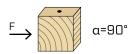
Diâmetro nominal	d_1	[mm]	3,5	4	4,5	5	6	8
Diâmetro da cabeça	d_K	[mm]	7,00	8,00	9,00	10,00	12,00	14,50
Diâmetro do núcleo	d_2	[mm]	2,25	2,55	2,80	3,40	3,95	5,40
Diâmetro da haste	d_S	[mm]	2,45	2,75	3,15	3,65	4,30	5,80
Espessura da cabeça	t_1	[mm]	3,50	3,80	4,25	4,65	5,30	6,00
Diâmetro do pré-furo ⁽¹⁾	d _V	[mm]	2,0	2,5	3,0	3,0	4,0	5,0

 $^{^{(1)}}$ Em materiais de densidade elevada, aconselha-se a fazer um pré-furo em função da espécie lenhosa.

PARÂMETROS MECÂNICOS CARACTERÍSTICOS

Diâmetro nominal	d_1	[mm]	3,5	4	4,5	5	6	8
Resistência à tração	$f_{tens,k}$	[kN]	2,2	3,2	4,4	5,0	6,8	14,1
Momento de cedência	$M_{y,k}$	[Nm]	1,3	1,9	2,8	4,4	8,2	17,6
Parâmetro de resistência à extração	$f_{ax,k}$	$[N/mm^2]$	19,1	17,1	17,2	17,9	11,6	14,8
Densidade associada	ρ_{a}	[kg/m ³]	440	410	410	440	420	410
Parâmetro de penetração da cabeça	f _{head,k}	$[N/mm^2]$	16,0	13,4	18,0	17,6	12,0	12,5
Densidade associada	ρ _a	[kg/m ³]	380	390	440	440	440	440

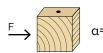
^(*) Não possui marcação CE.


DISTÂNCIAS MÍNIMAS PARA PARAFUSOS SOB TENSÃO AO CORTE

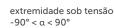
parafusos inseridos SEM pré-furo

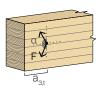
 $\rho_k \leq 420 \; kg/m^3$

d_1	[mm]		3,5	4	4,5		5	6	8
a ₁	[mm]	10 ⋅d	35	40	45	12·d	60	72	96
a ₂	[mm]	5·d	18	20	23	5·d	25	30	40
a _{3,t}	[mm]	15 ⋅d	53	60	68	15·d	75	90	120
a _{3,c}	[mm]	10·d	35	40	45	10·d	50	60	80
a _{4,t}	[mm]	5·d	18	20	23	5·d	25	30	40
a _{4,c}	[mm]	5·d	18	20	23	5·d	25	30	40

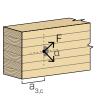

d_1	[mm]		3,5	4	4,5		5	6	8
a ₁	[mm]	5·d	18	20	23	5·d	25	30	40
a ₂	[mm]	5·d	18	20	23	5·d	25	30	40
a _{3,t}	[mm]	10·d	35	40	45	10·d	50	60	80
a _{3,c}	[mm]	10·d	35	40	45	10·d	50	60	80
a _{4,t}	[mm]	7·d	25	28	32	10·d	50	60	80
a _{4,c}	[mm]	5·d	18	20	23	5·d	25	30	40

parafusos inseridos COM pré-furo

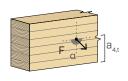

α=90°


d_1	[mm]		3,5	4	4,5		5	6	8
a ₁	[mm]	5·d	18	20	23	5·d	25	30	40
a ₂	[mm]	3·d	11	12	14	3·d	15	18	24
a _{3,t}	[mm]	12·d	42	48	54	12·d	60	72	96
a _{3,c}	[mm]	7·d	25	28	32	7·d	35	42	56
a _{4,t}	[mm]	3·d	11	12	14	3·d	15	18	24
a _{4,c}	[mm]	3·d	11	12	14	3·d	15	18	24

4,5 5 6 8 d_1 [mm] 3,5 4 4·d 32 [mm] 4·d 14 16 18 20 24 a_1 4·d 14 16 18 4-d 20 24 32 [mm] a_2 7·d 25 28 32 7∙d 35 42 56 $a_{3,t}$ [mm] 7·d 25 28 32 7∙d 35 42 56 [mm] a_{3,c} 18 20 23 7·d 35 42 56 5·d [mm] 12 14 3·d 15 18 24 [mm] 3·d 11


 α = ângulo entre força e fibras

 $d = d_1 = diâmetro nominal do parafuso$



borda sob tensão 0° < α < 180°

borda sem tensão 180° < α < 360°

DISTÂNCIAS MÍNIMAS

NOTAS

- As distâncias mínimas estão em conformidade com a norma EN 1995:2014 considerando um diâmetro de cálculo equivalente a d = diâmetro nominal
- Em caso de ligação aço-madeira, os espaçamentos mínimos (a₁, a₂) podem ser multiplicados por um coeficiente 0,7
- Em caso de ligação painel-madeira, os espaçamentos mínimos (a₁, a₂) podem ser multiplicados por um coeficiente 0,85.

VALORES ESTÁTICOS

NOTAS

- As resistências características ao corte madeira-madeira foram avaliadas considerando um ângulo ϵ de 90° entre as fibras do segundo elemento e o conector.
- As resistências características à extração da rosca foram avaliadas considerando um ângulo ϵ de 90° entre as fibras do elemento de madeira e o conector.
- Em fase de cálculo, considerou-se uma massa volúmica dos elementos de madeira equivalente a $\rho_k = 385 \text{ kg/m}^3$ Para valores de ρ_k diferentes, as resistências tabeladas podem ser convertidas através do coeficiente k_{dens} (ver pág. 42).
- uma distância a_1 , a capacidade de carga característica ao corte efetiva $R_{ef,-}$ $V_{,k}$ pode ser calculada através do número efetivo $n_{\mbox{ef}}$ (ver pág. 42).

• Para uma fila de n parafusos dispostos paralelamente à direção da fibra a

CORTE						TRAÇÃO				
	geoi	metria		madeira-madeira	madeira-madeira com anilha	extração da roscagem	penetração da cabeça	penetração da cabeça com anilha		
d ₁ [mm]	L [mm]	b [mm]	A [mm]	R _{V,k} [kN]	R _{V,k} [kN]	R _{ax,k} [kN]	R _{head,k} [kN]	R _{head,k} [kN]		
	25	18	7	0,41	-	1,08	0,79	-		
	30	18	12	0,55	-	1,08	0,79	-		
3,5	35	18	17	0,63	-	1,08	0,79	-		
	40	18	22	0,64	-	1,08	0,79	-		
	30	18	12	0,62	-	1,17	0,85	-		
	35	18	17	0,68	-	1,17	0,85	-		
	40	24	16	0,69	-	1,56	0,85	-		
4	45	30	15	0,67	-	1,95	0,85	-		
	50	30	20	0,76	-	1,95	0,85	-		
	60	35	25	0,78	-	2,28	0,85	-		
	35	24	11	0,76	-	1,77	1,31	-		
	40	24	16	0,88	-	1,77	1,31	-		
	45	30	15	0,87	-	2,21	1,31	-		
4,5	50	30	20	0,95	-	2,21	1,31	-		
	60	35	25	1,04	-	2,58	1,31	-		
	70	40	30	1,04	-	2,94	1,31	-		
	80	40	40	1,04	-	2,94	1,31	-		
	40	20	20	1,04	-	1,61	1,58	-		
	45	24	21	1,13	-	1,93	1,58	-		
	50	24	26	1,21	-	1,93	1,58	-		
5	60	30	30	1,35	-	2,41	1,58	-		
	70	35	35	1,35	-	2,82	1,58	-		
	80	40	40	1,35	-	3,22	1,58	-		
	90	45	45	1,35	-	3,62	1,58	-		
	100	50	50	1,35	-	4,02	1,58	-		
	60	30	30	1,48	1,44	1,95	1,55	4,31		
	80	40	40	1,77	1,92	2,60	1,55	4,31		
6	100	50	50	1,77	2,13	3,25	1,55	4,31		
	120	60	60	1,77	2,29	3,90	1,55	4,31		
	140	75 75	65	1,77	2,46	4,87	1,55	4,31		
	160	75	85	1,77	2,46	4,87	1,55	4,31		
	120	60	60	2,83	3,79	6,76	2,36	7,02		
	160 200	80	120	2,83	4,00	9,01	2,36	7,02		
8	240	80	120	2,83 2,83	4,00	9,01	2,36	7,02 7,02		
	280	80	160 200	2,83	4,00 4,00	9,01 9,01	2,36 2,36	7,02		
	320	80	240	2,83	4,00	9,01	2,36	7,02		

PRINCÍPIOS GERAIS

- Os valores característicos são conforme a norma EN 1995:2014, de acordo com EN 14592.
- Os valores de projeto são obtidos a partir dos valores característicos, desta forma:

$$R_d = \frac{R_k \cdot k_{mod}}{\gamma_M}$$

Os coeficientes γ_M e $k_{\mbox{mod}}$ devem ser considerados em função da norma vigente utilizada para o cálculo.

- Valores de resistência mecânica e geometria dos parafusos de acordo com a marcação CE em conformidade com a norma EN 14592.
- A dimensão e a verificação dos elementos de madeira devem ser feitas à parte.
- As resistências características ao corte são avaliadas para parafusos inseridos sem pré-furo; em caso de parafusos inseridos com pré-furo, é possível obter maiores valores de resistência.
- O posicionamento dos parafusos deve ser efetuado dentro das distâncias mínimas.
- As resistências características à extração da rosca foram avaliadas considerando um comprimento de cravação de b.
- A resistência característica de penetração da cabeça foi avaliada sobre elemento de madeira.
- As resistências características ao corte madeira com anilha foram avaliadas considerando o comprimento efetivo da rosca no segundo elemento.